陈剑豪团队实现首个电控二维磁振子阀

2021/11/02

北京大学物理学院、北京量子信息科学研究院陈剑豪研究员团队与谢心澄院士等合作,实现了首个基于扩散型自旋波量子(磁振子)的电调控开关。2021111日,相关研究成果以《电控范德瓦尔斯磁振子阀》Electrically switchable van der Waals magnon valves为题,在线发表于《自然·通讯》Nature Communications

近年来发现的范德瓦尔斯磁体是一种低维自旋有序体系。这种体系由于在二维超薄极限下仍然可能具有磁序,且具有高度可调性和功能化特性而受到广泛关注。其中,二维磁体的自旋波量子(磁振子)作为一种低功耗的信息载体,在未来量子增强的信息技术领域具有重要的应用潜力。

磁振子应用于信息领域所面临的第一个门槛是制备类比于基于电荷的晶体管开关效应的磁振子的“开”态和“关”态。由于磁振子的强波动性,注入和探测磁振子信号相对易于实现,但是通过栅电极在非特征频率下完全关闭磁振子信号则是一个尚未解决的国际性难题。此前,人们通过磁场变化实现了磁振子信号的开关,然而磁场难以局域化的特点使得这类磁控磁振子阀无法进行规模集成。因此,实现可完全开关、易于小型化和集成化的电控磁振子阀一直是科学家的追求目标。

陈剑豪团队长期研究低维量子材料器件物理,与合作者在低维高迁移率材料、低维拓扑材料和低维磁性材料领域完成一系列重要的研究工作,如发现原位氢化石墨烯的可控自旋轨道耦合和铁磁-反铁磁耦合相变(Physical Review B 102, 045402 (2020)Physical Review B 104, 125422 (2021)),发现拓扑半金属的对称性破缺和非线性光电效应(Advanced Materials 30, 1706402 (2018); Nature Materials 18, 476 (2019))等。

近日,陈剑豪团队实验发现低维磁体的磁振子输运过程具有高度可调性,并与北京大学谢心澄院士、近藤龙一(Ryuichi Shindo)研究员,复旦大学肖江教授、南阳理工大学刘政副教授和中山大学于鹏副教授等合作,建立了二维磁振子模型,并量化分析了其输运过程中的高度非线性;利用这种非线性,陈剑豪团队制备了基于范德瓦尔斯反铁磁绝缘体MnPS3(锰磷硫)的磁振子阀,实现了对其二次谐波磁振子信号的完全可逆电调控,并首次演示了扩散型磁振子逻辑非门。磁振子逻辑是一种崭新的低功耗数字电路方案,未来有望成为基于电荷逻辑方案的良好补充。

这项研究工作还预言了包括但不限于CrI3(碘化铬)、CrBr3(溴化铬)、FePS3(铁磷硫)、CrPS4(铬磷硫)等一大类范德瓦尔斯铁磁和反铁磁材料,都将表现出与MnPS3类似的磁振子阀调控效果。该成果作为低维自旋电子学领域研究的一项突破,对材料科学、纳米电子学和物理学领域都将产生重大影响。

2021111日,相关研究成果以“电控范德瓦尔斯磁振子阀”(Electrically switchable van der waals magnon valves)为题,在线发表于《自然·通讯》(Nature Communications);北京大学2017级博士研究生陈光毅和齐少勉为共同第一作者;陈剑豪为通讯作者。北京量子院-北京大学联合博士后陈迪、鹿鸣、曹世民在部分数据采集和数据分析中作出重要贡献;此外,该工作部分测量数据在北京量子院综合测试平台完成,得到平台高级工程师张玉、颜世莉的大力支持。

上述研究工作得到了国家重点研发计划“量子调控与量子信息”重点专项、国家自然科学基金、北京市自然科学基金杰出青年科学基金、中国科学院战略性先导科技专项等项目的支持。


20211102-1.jpg



1  MnPS3磁振子阀结构图

A.反铁磁绝缘体MnPS3的晶体和自旋结构的原子模型;B.MnPS3磁振子阀装置的原子力显微图,其中注入端、栅极和探测端电极分别用深绿色、红色和蓝色标记;C.磁振子的产生、调控和探测示意图,其中左上部分展示了带有外部电路的器件结构和面内磁场的方向,右下部分展示了栅极对自旋波的电调控,Iin为交流注入电流,Igate为直流栅极调控电流,V为逆自旋霍尔电压二次谐波信号,θ为面内磁场与x方向的夹角。


20211102-2.jpg

2 MnPS3磁振子阀的电调控

A. V2ω,0 与直流栅极电流IgateB = 9 TT = 2 K下的关系;B.V在不同Igate下与外部磁场角度θ的关系;C.利用Igate0 μA开”态)和 150 μA关”态)之间实现MnPS3 磁振子阀的反复开关(磁振子非门)。


(原位量子输运团队)