超导量子芯片模拟多种陈绝缘体
2023/09/20
近日,北京量子信息科学研究院(简称“量子院”)/中国科学院物理研究所量子计算云平台团队,与南开大学、华南理工大学、日本理化学研究所等通力合作,利用集成有30个量子比特的梯子型量子芯片,成功实现了具有不同陈数的多种陈绝缘体的模拟,并展示了理论预测的体边对应关系。2023年 9月5 日,该成果以 《在超导量子芯片上模拟陈绝缘体》(Simulating Chern insulators on a superconducting quantum processor)为题发表在《自然·通讯》(Nature Communications)上。
量子霍尔效应是凝聚态物理学中的基本现象,人们发展了拓扑能带理论来研究此类拓扑物态,发现量子霍尔系统的能带结构是和系统的边界态密切相关的,即存在体相与边缘的对应,并利用陈数(Chern number)来区分不同的拓扑结构,以陈绝缘体来描述相关拓扑物态。陈绝缘体材料可通过第一性原理计算预测,实验合成并检测,过去几年出现了系列创新性成果,并有望发展出具有实用价值的器件。
随着量子系统调控技术的发展,人们也利用各种人工可控量子系统来模拟陈绝缘体并揭示其性质。超导量子计算系统具有运行稳定,通用性强的优势,将是模拟陈绝缘体的理想平台。
合作团队制备了高质量的具有30比特的量子芯片,实验中精确控制其量子比特之间的耦合强度,并降低比特间串扰,(图1和图2), 实现了一维和梯子型比特间耦合的构型。 团队设计的模拟方案是将二维陈绝缘体格点模型的一个维度利用傅里叶变换映射为人工控制相位,从而用一维链状量子比特来实现其模拟 (图3)。 基于同样的思想,双层二维陈绝缘体则可以利用两个一维链状平行耦合,形成梯子型比特间耦合的量子芯片实现,而人工维度相位控制还可实现双层陈绝缘体不同的耦合方式。这样即实现了不同陈数的陈绝缘体。
团队通过激发特定量子比特、测量不同本征态能量的方案,直接测量拓扑能带结构(图4)并观测系统拓扑边界态的边界局域的动力学特征,在超导量子模拟平台证实了拓扑能带理论中的体边对应关系(Bulk-edge correspondence)(图5)。此外,利用全部30个量子比特,在超导量子模拟平台上通过模拟双层结构陈绝缘体,实验上首次观察到了具有零霍尔电导(零陈数)的特殊拓扑非平庸边缘态(图6)。另外,实验上还探测到了具有更高陈数的陈绝缘体。
该工作通过精确控制超导量子比特系统及读出的技术方案,实现对量子多体系统拓扑物态性质的复现与观测,也表明团队30比特梯子型耦合超导量子芯片的精确可控性。中国科学院物理研究所相忠诚副主任工程师,量子院黄凯旋博士后,华南理工大学张煜然教授为文章共同第一作者,量子院/中国科学院物理研究所量子计算云平台团队范桁研究员、许凯副研究员以及日本理化学研究所Franco Nori教授为共同通讯作者,作者还包括中国科学院物理研究所郑东宁研究员,宋小会副研究员,田野副研究员,量子院于海峰研究员与薛光明副研究员,华南理工刘涛教授,南开大学刘智波教授等。该工作得到国家自然科学基金、科技部、北京市自然科学基金和中国科学院先导专项等项目的支持。并得到翁红明研究员的细致指导与讨论。
文章链接:https://www.nature.com/articles/s41467-023-41230-9